14 #ifndef EIGEN_LMONESTEP_H
15 #define EIGEN_LMONESTEP_H
17 #include "./InternalHeaderCheck.h"
21 template<
typename FunctorType>
22 LevenbergMarquardtSpace::Status
23 LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
27 RealScalar temp, temp1,temp2;
29 RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
30 eigen_assert(x.size()==n);
32 temp = 0.0; xnorm = 0.0;
34 Index df_ret = m_functor.df(x, m_fjac);
36 return LevenbergMarquardtSpace::UserAsked;
43 for (
int j = 0; j < x.size(); ++j)
44 m_wa2(j) = m_fjac.col(j).blueNorm();
45 QRSolver qrfac(m_fjac);
48 return LevenbergMarquardtSpace::ImproperInputParameters;
51 m_rfactor = qrfac.matrixR();
52 m_permutation = (qrfac.colsPermutation());
57 if (!m_useExternalScaling)
58 for (
Index j = 0; j < n; ++j)
59 m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
63 xnorm = m_diag.cwiseProduct(x).stableNorm();
64 m_delta = m_factor * xnorm;
72 m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
73 m_qtf = m_wa4.head(n);
78 for (
Index j = 0; j < n; ++j)
79 if (m_wa2[m_permutation.indices()[j]] != 0.)
80 m_gnorm = (std::max)(m_gnorm,
abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
83 if (m_gnorm <= m_gtol) {
85 return LevenbergMarquardtSpace::CosinusTooSmall;
89 if (!m_useExternalScaling)
90 m_diag = m_diag.cwiseMax(m_wa2);
94 internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
99 pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
103 m_delta = (std::min)(m_delta,pnorm);
106 if ( m_functor(m_wa2, m_wa4) < 0)
107 return LevenbergMarquardtSpace::UserAsked;
109 fnorm1 = m_wa4.stableNorm();
113 if (Scalar(.1) * fnorm1 < m_fnorm)
114 actred = 1. - numext::abs2(fnorm1 / m_fnorm);
118 m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
119 temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm);
120 temp2 = numext::abs2(
sqrt(m_par) * pnorm / m_fnorm);
121 prered = temp1 + temp2 / Scalar(.5);
122 dirder = -(temp1 + temp2);
128 ratio = actred / prered;
131 if (ratio <= Scalar(.25)) {
133 temp = RealScalar(.5);
135 temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
136 if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
139 m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
141 }
else if (!(m_par != 0. && ratio < RealScalar(.75))) {
142 m_delta = pnorm / RealScalar(.5);
143 m_par = RealScalar(.5) * m_par;
147 if (ratio >= RealScalar(1e-4)) {
150 m_wa2 = m_diag.cwiseProduct(x);
152 xnorm = m_wa2.stableNorm();
158 if (
abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
161 return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
163 if (
abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
166 return LevenbergMarquardtSpace::RelativeReductionTooSmall;
168 if (m_delta <= m_xtol * xnorm)
171 return LevenbergMarquardtSpace::RelativeErrorTooSmall;
175 if (m_nfev >= m_maxfev)
178 return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
180 if (
abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
183 return LevenbergMarquardtSpace::FtolTooSmall;
185 if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
188 return LevenbergMarquardtSpace::XtolTooSmall;
190 if (m_gnorm <= NumTraits<Scalar>::epsilon())
193 return LevenbergMarquardtSpace::GtolTooSmall;
196 }
while (ratio < Scalar(1e-4));
198 return LevenbergMarquardtSpace::Running;
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived > abs(const Eigen::ArrayBase< Derived > &x)
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)