10 #ifndef EIGEN_EULERSYSTEM_H
11 #define EIGEN_EULERSYSTEM_H
13 #include "./InternalHeaderCheck.h"
18 template <
typename Scalar_,
class _System>
24 template <
int Num,
bool IsPositive = (Num > 0)>
31 struct Abs<Num, false>
33 enum { value = -Num };
39 enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
42 template<
typename System,
44 int OtherRows=Other::RowsAtCompileTime,
45 int OtherCols=Other::ColsAtCompileTime>
46 struct eulerangles_assign_impl;
49 #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
127 template <
int _AlphaAxis,
int _BetaAxis,
int _GammaAxis>
163 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
164 ALPHA_AXIS_IS_INVALID);
166 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
167 BETA_AXIS_IS_INVALID);
169 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
170 GAMMA_AXIS_IS_INVALID);
173 ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
176 BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
188 template <
typename Derived>
194 typedef typename Derived::Scalar Scalar;
196 const Scalar plusMinus =
IsEven? 1 : -1;
197 const Scalar minusPlus =
IsOdd? 1 : -1;
199 const Scalar Rsum =
sqrt((mat(I_,I_) * mat(I_,I_) + mat(I_,J_) * mat(I_,J_) + mat(J_,K_) * mat(J_,K_) + mat(K_,K_) * mat(K_,K_))/2);
200 res[1] = atan2(plusMinus * mat(I_,K_), Rsum);
204 res[0] = atan2(minusPlus * mat(J_, K_), mat(K_, K_));
205 res[2] = atan2(minusPlus * mat(I_, J_), mat(I_, I_));
207 else if(plusMinus * mat(I_, K_) > 0) {
208 Scalar spos = mat(J_, I_) + plusMinus * mat(K_, J_);
209 Scalar cpos = mat(J_, J_) + minusPlus * mat(K_, I_);
210 Scalar alphaPlusMinusGamma = atan2(spos, cpos);
211 res[0] = alphaPlusMinusGamma;
215 Scalar sneg = plusMinus * (mat(K_, J_) + minusPlus * mat(J_, I_));
216 Scalar cneg = mat(J_, J_) + plusMinus * mat(K_, I_);
217 Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
218 res[0] = alphaMinusPlusBeta;
223 template <
typename Derived>
225 const MatrixBase<Derived>& mat, internal::false_type )
230 typedef typename Derived::Scalar Scalar;
232 const Scalar plusMinus =
IsEven? 1 : -1;
233 const Scalar minusPlus =
IsOdd? 1 : -1;
235 const Scalar Rsum =
sqrt((mat(I_, J_) * mat(I_, J_) + mat(I_, K_) * mat(I_, K_) + mat(J_, I_) * mat(J_, I_) + mat(K_, I_) * mat(K_, I_)) / 2);
237 res[1] = atan2(Rsum, mat(I_, I_));
240 if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {
241 res[0] = atan2(mat(J_, I_), minusPlus * mat(K_, I_));
242 res[2] = atan2(mat(I_, J_), plusMinus * mat(I_, K_));
244 else if(mat(I_, I_) > 0) {
245 Scalar spos = plusMinus * mat(K_, J_) + minusPlus * mat(J_, K_);
246 Scalar cpos = mat(J_, J_) + mat(K_, K_);
247 res[0] = atan2(spos, cpos);
251 Scalar sneg = plusMinus * mat(K_, J_) + plusMinus * mat(J_, K_);
252 Scalar cneg = mat(J_, J_) - mat(K_, K_);
253 res[0] = atan2(sneg, cneg);
258 template<
typename Scalar>
259 static void CalcEulerAngles(
260 EulerAngles<Scalar, EulerSystem>& res,
265 std::conditional_t<IsTaitBryan, internal::true_type, internal::false_type>());
268 res.alpha() = -res.alpha();
271 res.beta() = -res.beta();
274 res.gamma() = -res.gamma();
277 template <
typename Scalar_,
class _System>
284 friend struct internal::eulerangles_assign_impl;
287 #define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
289 typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
291 EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
292 EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
293 EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
294 EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
296 EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
297 EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
298 EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
299 EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
301 EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
302 EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
303 EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
304 EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
internal::traits< Derived >::Scalar Scalar
Represents a rotation in a 3 dimensional space as three Euler angles.
Definition: EulerAngles.h:103
_System System
Definition: EulerAngles.h:112
Matrix< Scalar, 3, 3 > Matrix3
Definition: EulerAngles.h:114
Represents a fixed Euler rotation system.
Definition: EulerSystem.h:129
static constexpr int AlphaAxis
Definition: EulerSystem.h:135
static constexpr int GammaAxis
Definition: EulerSystem.h:141
@ GammaAxisAbs
Definition: EulerSystem.h:147
@ IsOdd
Definition: EulerSystem.h:155
@ IsGammaOpposite
Definition: EulerSystem.h:151
@ IsAlphaOpposite
Definition: EulerSystem.h:149
@ IsEven
Definition: EulerSystem.h:156
@ AlphaAxisAbs
Definition: EulerSystem.h:145
@ BetaAxisAbs
Definition: EulerSystem.h:146
@ IsTaitBryan
Definition: EulerSystem.h:158
@ IsBetaOpposite
Definition: EulerSystem.h:150
static constexpr int BetaAxis
Definition: EulerSystem.h:138
EulerAxis
Representation of a fixed signed rotation axis for EulerSystem.
Definition: EulerSystem.h:64
@ EULER_X
Definition: EulerSystem.h:65
@ EULER_Z
Definition: EulerSystem.h:67
@ EULER_Y
Definition: EulerSystem.h:66
Namespace containing all symbols from the Eigen library.
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)