10 #ifndef EIGEN_REAL_QZ_H
11 #define EIGEN_REAL_QZ_H
13 #include "./InternalHeaderCheck.h"
59 template<
typename MatrixType_>
class RealQZ
62 typedef MatrixType_ MatrixType;
64 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
65 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
66 Options = MatrixType::Options,
67 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
68 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
70 typedef typename MatrixType::Scalar Scalar;
71 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
95 m_isInitialized(false),
107 RealQZ(
const MatrixType& A,
const MatrixType& B,
bool computeQZ =
true) :
108 m_S(A.rows(),A.cols()),
109 m_T(A.rows(),A.cols()),
110 m_Q(A.rows(),A.cols()),
111 m_Z(A.rows(),A.cols()),
112 m_workspace(A.rows()*2),
114 m_isInitialized(false),
125 eigen_assert(m_isInitialized &&
"RealQZ is not initialized.");
126 eigen_assert(m_computeQZ &&
"The matrices Q and Z have not been computed during the QZ decomposition.");
135 eigen_assert(m_isInitialized &&
"RealQZ is not initialized.");
136 eigen_assert(m_computeQZ &&
"The matrices Q and Z have not been computed during the QZ decomposition.");
145 eigen_assert(m_isInitialized &&
"RealQZ is not initialized.");
154 eigen_assert(m_isInitialized &&
"RealQZ is not initialized.");
165 RealQZ&
compute(
const MatrixType& A,
const MatrixType& B,
bool computeQZ =
true);
173 eigen_assert(m_isInitialized &&
"RealQZ is not initialized.");
181 eigen_assert(m_isInitialized &&
"RealQZ is not initialized.");
182 return m_global_iter;
190 m_maxIters = maxIters;
196 MatrixType m_S, m_T, m_Q, m_Z;
200 bool m_isInitialized;
202 Scalar m_normOfT, m_normOfS;
210 void hessenbergTriangular();
214 void splitOffTwoRows(
Index i);
221 template<
typename MatrixType>
222 void RealQZ<MatrixType>::hessenbergTriangular()
225 const Index dim = m_S.cols();
228 HouseholderQR<MatrixType> qrT(m_T);
229 m_T = qrT.matrixQR();
230 m_T.template triangularView<StrictlyLower>().setZero();
231 m_Q = qrT.householderQ();
233 m_S.applyOnTheLeft(m_Q.adjoint());
236 m_Z = MatrixType::Identity(dim,dim);
238 for (Index j=0; j<=dim-3; j++) {
239 for (Index i=dim-1; i>=j+2; i--) {
242 if(!numext::is_exactly_zero(m_S.coeff(i, j)))
244 G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
245 m_S.coeffRef(i,j) = Scalar(0.0);
246 m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
247 m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
250 m_Q.applyOnTheRight(i-1,i,G);
253 if(!numext::is_exactly_zero(m_T.coeff(i, i - 1)))
255 G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
256 m_T.coeffRef(i,i-1) = Scalar(0.0);
257 m_S.applyOnTheRight(i,i-1,G);
258 m_T.topRows(i).applyOnTheRight(i,i-1,G);
261 m_Z.applyOnTheLeft(i,i-1,G.adjoint());
268 template<
typename MatrixType>
269 inline void RealQZ<MatrixType>::computeNorms()
271 const Index size = m_S.cols();
272 m_normOfS = Scalar(0.0);
273 m_normOfT = Scalar(0.0);
274 for (Index j = 0; j < size; ++j)
276 m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
277 m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
283 template<
typename MatrixType>
284 inline Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
290 Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res));
291 if (numext::is_exactly_zero(s))
293 if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
301 template<
typename MatrixType>
302 inline Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
307 if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
315 template<
typename MatrixType>
316 inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
320 const Index dim=m_S.cols();
321 if (numext::is_exactly_zero(abs(m_S.coeff(i + 1, i))))
323 Index j = findSmallDiagEntry(i,i+1);
327 Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
328 template solve<OnTheRight>(m_S.template block<2,2>(i,i));
329 Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
330 Scalar q = p*p + STi(1,0)*STi(0,1);
338 G.makeGivens(p + z, STi(1,0));
340 G.makeGivens(p - z, STi(1,0));
341 m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
342 m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
345 m_Q.applyOnTheRight(i,i+1,G);
347 G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
348 m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
349 m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
352 m_Z.applyOnTheLeft(i+1,i,G.adjoint());
354 m_S.coeffRef(i+1,i) = Scalar(0.0);
355 m_T.coeffRef(i+1,i) = Scalar(0.0);
360 pushDownZero(j,i,i+1);
365 template<
typename MatrixType>
366 inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
369 const Index dim = m_S.cols();
370 for (Index zz=z; zz<l; zz++)
373 Index firstColS = zz>f ? (zz-1) : zz;
374 G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
375 m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
376 m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
377 m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
380 m_Q.applyOnTheRight(zz,zz+1,G);
384 G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
385 m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
386 m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
387 m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
390 m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
394 G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
395 m_S.applyOnTheRight(l,l-1,G);
396 m_T.applyOnTheRight(l,l-1,G);
397 m_S.coeffRef(l,l-1)=Scalar(0.0);
400 m_Z.applyOnTheLeft(l,l-1,G.adjoint());
404 template<
typename MatrixType>
405 inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter)
408 const Index dim = m_S.cols();
416 a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
417 a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
418 b12=m_T.coeff(f+0,f+1),
419 b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
420 b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
421 a87=m_S.coeff(l-1,l-2),
422 a98=m_S.coeff(l-0,l-1),
423 b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
424 b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
425 Scalar ss = abs(a87*b77i) + abs(a98*b88i),
426 lpl = Scalar(1.5)*ss,
428 x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
429 - a11*a21*b12*b11i*b11i*b22i;
430 y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
431 - a21*a21*b12*b11i*b11i*b22i;
432 z = a21*a32*b11i*b22i;
437 x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
438 (m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
439 y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
442 else if (iter>23 && !(iter%8))
445 x = internal::random<Scalar>(-1.0,1.0);
446 y = internal::random<Scalar>(-1.0,1.0);
447 z = internal::random<Scalar>(-1.0,1.0);
458 a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
459 a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
460 a32 = m_S.coeff(f+2,f+1),
462 a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
463 a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
465 b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
466 b22 = m_T.coeff(f+1,f+1),
468 b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
469 b99 = m_T.coeff(l,l);
471 x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
472 + a12/b22 - (a11/b11)*(b12/b22);
473 y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
479 for (Index k=f; k<=l-2; k++)
488 hr.makeHouseholderInPlace(tau, beta);
489 essential2 = hr.template bottomRows<2>();
491 m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
492 m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
494 m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
496 m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
499 hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
500 hr.makeHouseholderInPlace(tau, beta);
501 essential2 = hr.template bottomRows<2>();
503 Index lr = (std::min)(k+4,dim);
504 Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
506 tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
507 tmp += m_S.col(k+2).head(lr);
508 m_S.col(k+2).head(lr) -= tau*tmp;
509 m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
511 tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
512 tmp += m_T.col(k+2).head(lr);
513 m_T.col(k+2).head(lr) -= tau*tmp;
514 m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
519 Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
520 tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
522 m_Z.row(k+2) -= tau*tmp;
523 m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
525 m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
528 G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
529 m_S.applyOnTheRight(k+1,k,G);
530 m_T.applyOnTheRight(k+1,k,G);
533 m_Z.applyOnTheLeft(k+1,k,G.adjoint());
534 m_T.coeffRef(k+1,k) = Scalar(0.0);
537 x = m_S.coeff(k+1,k);
538 y = m_S.coeff(k+2,k);
540 z = m_S.coeff(k+3,k);
545 m_S.applyOnTheLeft(l-1,l,G.adjoint());
546 m_T.applyOnTheLeft(l-1,l,G.adjoint());
548 m_Q.applyOnTheRight(l-1,l,G);
549 m_S.coeffRef(l,l-2) = Scalar(0.0);
552 G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
553 m_S.applyOnTheRight(l,l-1,G);
554 m_T.applyOnTheRight(l,l-1,G);
556 m_Z.applyOnTheLeft(l,l-1,G.adjoint());
557 m_T.coeffRef(l,l-1) = Scalar(0.0);
560 template<
typename MatrixType>
564 const Index dim = A_in.cols();
566 eigen_assert (A_in.rows()==dim && A_in.cols()==dim
567 && B_in.rows()==dim && B_in.cols()==dim
568 &&
"Need square matrices of the same dimension");
570 m_isInitialized =
true;
571 m_computeQZ = computeQZ;
572 m_S = A_in; m_T = B_in;
573 m_workspace.resize(dim*2);
577 hessenbergTriangular();
585 while (l>0 && local_iter<m_maxIters)
587 f = findSmallSubdiagEntry(l);
589 if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
604 Index z = findSmallDiagEntry(f,l);
615 step(f,l, local_iter);
630 for(
Index i=0; i<dim-1; ++i)
632 if(!numext::is_exactly_zero(m_S.coeff(i + 1, i)))
635 internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right);
638 m_S.applyOnTheLeft(i,i+1,j_left);
639 m_S.applyOnTheRight(i,i+1,j_right);
640 m_T.applyOnTheLeft(i,i+1,j_left);
641 m_T.applyOnTheRight(i,i+1,j_right);
642 m_T(i+1,i) = m_T(i,i+1) = Scalar(0);
645 m_Q.applyOnTheRight(i,i+1,j_left.
transpose());
646 m_Z.applyOnTheLeft(i,i+1,j_right.
transpose());
Rotation given by a cosine-sine pair.
Definition: Jacobi.h:37
JacobiRotation transpose() const
Definition: Jacobi.h:65
Performs a real QZ decomposition of a pair of square matrices.
Definition: RealQZ.h:60
RealQZ & compute(const MatrixType &A, const MatrixType &B, bool computeQZ=true)
Computes QZ decomposition of given matrix.
Definition: RealQZ.h:561
Index iterations() const
Returns number of performed QR-like iterations.
Definition: RealQZ.h:179
const MatrixType & matrixQ() const
Returns matrix Q in the QZ decomposition.
Definition: RealQZ.h:124
RealQZ & setMaxIterations(Index maxIters)
Definition: RealQZ.h:188
RealQZ(const MatrixType &A, const MatrixType &B, bool computeQZ=true)
Constructor; computes real QZ decomposition of given matrices.
Definition: RealQZ.h:107
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: RealQZ.h:171
const MatrixType & matrixZ() const
Returns matrix Z in the QZ decomposition.
Definition: RealQZ.h:134
const MatrixType & matrixT() const
Returns matrix S in the QZ decomposition.
Definition: RealQZ.h:153
RealQZ(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition: RealQZ.h:88
const MatrixType & matrixS() const
Returns matrix S in the QZ decomposition.
Definition: RealQZ.h:144
Eigen::Index Index
Definition: RealQZ.h:72
ComputationInfo
Definition: Constants.h:442
@ Success
Definition: Constants.h:444
@ NoConvergence
Definition: Constants.h:448
Namespace containing all symbols from the Eigen library.
Definition: Core:139
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:59
const int Dynamic
Definition: Constants.h:24